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A numerical iteration technique, which is simple to use and easy to implement, is 
proposed to solve perturbation problems. The technique may be used to supplement or 
to complement the PLK (Poincare, Lighthill, and Kuo) method. The iteration perturba- 
tion technique can solve problems for which the PLK method fails. Numerical ex- 
perience with several examples is described. 

1. PRODUCTION 

Differential equations of the form 

uw + l w~4 4 4(4 Y = w, O<Xbl, (1.1) 
Y(l) = c, U-2) 

where c is a prescribed constant and E is a small (perturbation) parameter are 
of common occurrence in fluid mechanics and other branches of applied 
mathematics. For example, the problem of the shock waves produced by a circular 
cylinder expanding uniformly in still air leads to a second order nonlinear 
differential equation for the velocity potential [7]. When this equation is written as 
two first-order differential equations, one of the equations is trivial and the other 
can be brought into the form of (I. 1). 

In the most widely studied cases of (l.l), where f(x) = P, n an integer > 1, 
problems of the form (l.l)-(1.2) can not be solved by the usual method of 
expanding the solution in a perturbation series 
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substituting (1.3) into (1. l), equating like powers of E, and solving the resulting 
sequence of problems for J&Y), J&),... . For as Comstock [5] points out, while 
the original equation has no singularity at the origin, not only does the equation 
for y,,(x) have a singularity at the origin, but the solutions for ul(x), y2(x),..., are 
successively more singular. 

Lighthill’s method [S] (commonly referred to as the PLK method for Poincare, 
Lighthill, and Kuo) of overcoming this difficulty was to expand the independent as 
well as the dependent variable in a perturbation series 

x = z + EXl(Z) + E2XZ(Z) + ...) (1.4) 

Y = h(Z) + VI(Z) + ~“YdZ) + ...> (1.5) 

which effectively moves the singularities in y,, , y, ,..., outside of the interval of 
interest 0 < x < 1. One of the reasons that the PLK method is so important is 
that through it an analytical expression can be obtained for y(x) in the vicinity 
of the origin. A discussion of the PLK method and subsequent developments and 
generalizations can be found in Comstock’s survey article [5] and in [2]. 

Now, as Comstock [4, 51 points out, there are cases in which the PLK method 
appears to work but in fact gives quantitatively erroneous results. For such 
problems, and for problems in which it may be too difficult to obtain analytic 
(closed form) solutions, we propose in this paper an iterative numerical solution 
scheme. While our numerical scheme does not have the desirable feature of 
furnishing an analytical expression for the behavior of v(x) at the origin, it has 
given correct numerical solutions when the PLK method has failed. Such solutions 
for several values of E combined with an extrapolation technique can yield the 
behavior of y(x) at the origin, as we show by an example. 

The method is described in detail in the following section, and numerical 
experience with three perturbation problems is presented in Section 3. 

2. ITERATION TECHNIQUE 

The solution technique is a numerical one. It consists of generating a sequence of 
solutions yO(x), JJ~(x),..., to the original problem where yO(x) is obtained by setting 
E = 0. The y,,(x) solution sometimes may be found analytically, or by numerical 
integration. The solution for JQ(X) is generated by numerical integration of the 
differential equation where J+,(X) appears on the right-hand side of the differential 
equation and E takes its prescribed numerical value. The solution for uZ(x) is found 
similarly in terms of yl(x) and the prescribed value of E, etc. A variety of possi- 
bilities exist for the iteration form of the differential equations. This is best exhibited 
by an example. 
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Consider the perturbation equation 

(f(x) + 4#44 + 4(x) Y = r(x). 

For the yO(x) equation, set E = 0, and solve 

(2.1) 

“&4Gwdx) + 4(x) Yo = e-4 (2.2) 

for h(x). 
For y,(x), n = 1, 2 ,..., the equation may be put into three forms. The Method I 

form is 

dynldx = (r(x) - q(x) in-MfO + w-4 (2.3) 

where only ynB1 appears on the right-hand side in both the numerator and the 
denominator. 

The Method II form is 

4Mx = (r(x) - q(x) ~~-J(f(x) + 4 (2.4) 

where Y,-~(x) appears in the numerator and yn(x) in the denominator on the 
right-hand side. 

The Method III form is 

dhldx = (r(x) - d-4 YJ/(.~(X) + w-d (2.5) 

where y,(x) appears in the numerator and ynel in the denominator. For more 
complicated equations, it is possible to express the differential equation for the 
nth iteration in terms of both yn and ynml in both the numerator and the 
denominator. In addition one may employ on the right-hand side yn , yn-r ,..., y, 
or some weighted combination of them. 

It turns our that the simplest expression, Eq. (2.3) is really Picard’s method 
expressed in differential equation form rather than the familiar integral equation 
form [6]. We can accordingly establish the conditions under which Method I 
converges. In general convergence will depend on the Lipschitz constant K of 
[r(x) - 4(x) vWl/W~ + 441; namely, 

where Y, y lie in the interval containing the solution y(x) of (1.1). 
It should be noted that for problems of interest, the solution for yO(x) is singular 

at the origin. In the original computer program embodying our method, this 
singularity was handled by a programming device of approximating x = 0 by a 
small finite number, namely lo- 3. As an alternative approach, the Referee, 
commenting on an earlier version of this paper, suggests that since y,,(x) + cc 
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as x -+ 0, then dy,/dx -+ -q(O)/c as x -+ 0, and accordingly an improved initial 
solution y,,(x) may be obtained in the matched form 

(2.7) 

The parameters X and E are determined from the equations expressing the 
continuity of the solution and the slope 

-q(O) Z/E + E = y&3, (2.8) 

-q(O)/c = dy,(Z)/dx. (2.9 

This procedure can be employed in our Examples 1 and 3, but not in Example 2, 
where q(0) = 0 but dy,(X)/dx # 0, 0 < x < 1. When we tried this alternative 
method for obtaining s,-,(x) in Example 1, we discovered that the solution converged 
at a rate slightly slower than the original method. However, this difference in the 
rate of convergence is so small that it may not be statistically significant. We 
continue to believe that the alternative method has merit, since it handles the 
singularity condition by an analytical approach rather than a programming device, 
and that it could very well exhibit superior performance in other problems and/or 
other data. 

For the PLK method Wasow [9] obtained a sufficient condition; namely, 

YOW 4(z) - 44 f 02 O<z<l. (2.10) 

Since the expression yO(z) q(z) - r(z) appears in the denominator of Wasow’s 
equations, the criterion (2.10) is the condition that rules out the presence of a 
singularity in the interval 0 < z < 1. 

In our development, the numerators in the Methods I, II, and III are of the form 
r(x) - q(x) ynpl or r(x) - q(x) y,, , which are similar to the left-hand side of (2.10). 
The Wasow condition, however, does not apply to our methods since the 
expressions like r(x) - q(x) yn-r , being in the numerator, no longer cause 
singularities when they vanish. From a practical point of view this may mean 
that the iteration perturbation method may be a candidate for problems which 
can not be solved by the PLK method due to the Wasow condition not being 
satisfied. 

3. NUMERICAL EXPERIENCE 

We will discuss three examples of perturbation problems which have appeared 
in the literature. All the examples possess analytical solutions against which 
numerical solutions can be compared. They have been solved over a variety of 
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conditions by Method I, which we will refer to as the Picard perturbation method. 

EXAMPLE 1 [5]. Consider the following example 

(x + ru)(du/dx) = --u + 2bx, O<x<l, 

u(1) = B = b(1 + v), 

which possesses the analytical solution 

where 
u = e-l{-x + (x” + 2e(C + bx2))lj2} 

i; = bq + e(b2/2)(1 + #. 

For E = 0, we obtain the analytic solution for uO(x) 

q,(x) = bx + b$x. 

Putting the equation in the form of Method I, we have 

du,/dx = (-u,, + 2bx)/(x + cue). 

It is interesting to note that (3.6) also has an analytic solution 

+ 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 

Cl (3.7) 

where 

C = 1 + l b, 

G=B--$+ larctan(~)1’211Ct~)l,2 + t$l,2 1, (3.8) 

but it is increasingly difficult to obtain analytical solutions for U,(X), n = 2, 3,... . 
The problem was solved numerically by the Picard perturbation method 

(Method I) and by Method II. The Picard perturbation method gave more accurate 
results. For the boundary condition y(l) = B, with b = 1 and 17 = .5 the analytical 
solution and the numerical integration solution for u&) by the Picard perturbation 
method are exhibited in Table 1 for E = 1.0, 10-l, 10-2, 10-4, and lo-*. The 
numerical integration was executed by a four point double precision Runge-Kutta 
method. From these tables we may conclude the following. 

5WW3-7 
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TABLE 1 

Example 1. u(l) = B = 1.5, b = 1.0, 7 = .5 

B = 1.0 

X 44 h(X) 

0.00 1.8027753 1.8027779 
0.05 I .7548542 1.7548568 
0.10 1.7110757 1.7110793 
0.20 1.6357545 I .6357582 
0.30 1.5761652 1.5761684 
0.40 1.5313196 1.5313227 
0.50 1.4999990 1.5000016 
0.60 1.4808635 1.4808665 
0.70 1.4725551 1.4725570 
0.80 1.4737625 1.4737639 
0.90 1.4832744 1.4832753 
1.00 1.4999990 I .5000000 

0.00 
0.05 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
1.00 

E E 10-2 

1 .0111874(10’) 1.0117332(101) 
6.3026545 6.3062624 
4.2916059 4.2931248 
2.5887140 2.5890216 
1.9413525 1.9414558 
1.6443273 1.6443728 
1.5oOOOOo 1.5000223 
1.4349249 1.4349363 
1.4160346 1.4160404 
1.4263709 1.4263498 
1.4562737 1.4562747 
1.5Oc@OOO 1.5OOOOOO 

E = 10-s 

0.00 lIKKK?wO(lOq 3.2938145(105) 
0.05 1.0049990(10~) 1.0083221(10’) 
0.10 5.0999988 5.1041126 
0.20 2.6999998 2.7004975 
0.30 1.9666666 1.9668059 
0.40 1 Is499999 1.6500540 
0.50 1.5oOOOOO 1.5000245 
0.60 1.4333333 1.4333454 
0.70 1.4142857 1.4142917 
0.80 1.4250000 1.4250028 
0.90 1.4555555 1.4555566 
1.00 1.4999999 1.5OOOQOO 

E = .lO 
4x) k(X) 

3.5000000 3.4999954 
3.0425968 3.042593 1 
2.6674242 2.6674199 
2.1291637 2.1291687 
1.8010416 1.8010551 
1.6080293 1.6080451 
1.5000000 1.5000119 
1.4464750 1.4464834 
1.4291153 1.4291207 
1.4366302 1.4366330 
1.4618339 1.4618363 
1.4999952 1.5OOoOOO 

E = IO-4 

1.0001124(102) l.0433836(10z) 
9.9531841 9.9846446 
5.0881802 5.0922413 
2.6987417 2.6992376 
1.9663972 1.9665362 
1 XX99409 1.6499948 
1.5OOOOOO 1.5000245 
1.4333496 1.4333616 
1.4143035 1.4143095 
1.4250137 1.4250165 
1.4555628 1.4555639 
1.5OOOOOO 1.5oOOOOO 



AN ITERATION PERTURBATION TECHNIQUE 291 

(1) The maximum relative error, max,s,&u(x) - u,(x))/u(x) is of the 
order 10-4, where u(x) is the analytical solution, II = 5, 0 < x < 1.0, 
10-Z < E < 1.0. 

(2) For E = 1O-4 and lo-*, the maximum relative error over the interval 
0 < x < 1.0 is of the order 10-3. At x = 0 and E = 10-4, the relative 
error is of the order .04, while for x = 0 and E = 1O-s, the relative error 
is of the order 33. 

It appears, therefore, that over a wide range of l the Picard perturbation method 
gives good agreement with the analytical solution over the entire profile including 
the origin, even though uO(x) is a poor approximation to the true solution. Except 
within the vicinity of x = 0, the profiles become stable after a few iterations. 
This suggests that for the very smallest E that improved accuracy may be obtained 
by iterating only over the interval (. 10,O) and using a smaller step size. Furthermore, 
the possibility of employing extrapolation procedures appears reasonable. Two 
extrapolation possibilities come to mind. The first is to extrapolate u,(x) versus x 
to x = 0 for a specific E and n. The second extrapolation procedure is to extrapolate 
u,(O) versus E for a specific n. We, in fact, applied the second technique, using ~~(0) 
for E = 1, 10-l, 1O-2, 1O-4 and extrapolating on a log-log plot to obtain a value 
of ~~(0) at E = lo-@ of 104, which is the true value. 

EXAMPLE 2 [4, 51. Consider the perturbation problem 

(xw + l u)(du/dx) + nxn-h - mxm-l = 0, (3.9) 
U(1) = b 3 1, (3.10) 

for which the analytical solution is 

or 

xnu + (l/2) EU2 = xm + (b + (l/2) Eb2 - 1) (3.11) 

u(x) = 
-x” f (x~~ + 2e[xm + (b + .5cb2 - l)])‘/” 

E (3.12) 

To satisfy the boundary condition at x = 1, the sign of the discriminant must be 
positive. 

For E = 0, the solution of (3.9), (3.10) is 

q,(x) = (x” + b - 1) x-~. (3.13) 

This example was solved for a variety of combinations of m and n for b = 1, 
E = .Ol; b = 2, E = .Ol; and for b = 2, E = .OOOl. In Tables 2, 3, and 4 are 
listed the analytical results at x = 0, u(O), and the Picard perturbation results, 
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TABLE 2 

Example 2. b = 1.0, c = .Ol 

m n 
40) 

analytical um 
No. iterations 

for convergence 

0.0 
0.5 

1.0 
1.0 
1.0 
1.0 

2.0 
2.0 
2.0 

3.0 
3.0 
3.0 

5.0 
5.0 
5.0 

10.0 
10.0 
10.0 

100.0 

1.0 
3.0 

0.0 
0.5 
3.0 

10.0 

3.0 
10.0 

100.0 

1.0 
2.0 
3.0 

0.5 
5.0 

10.0 

2.0 
5.0 

10.0 

2.0 

14.17744688 14.18032916 
1.0 nonconvergent 

0.004999875 0.004999874 
1.0 nonconvergent 
1.0 0.963893963 
1.0 1.060516712 

1.0 
1.0 
1.0 

1.0 
1.0 
1.0 

1.0 
1.0 
1.0 

1.0 
1.0 
1.0 

1.0 

1 .ooo975702 
1.068510671 

nonconvergent 

20 
20 

20 
15 

0.963893963 20 
1.001639530 15 
1.000000000 1 

nonconvergent 
1.000010229 
1.020694106 

1.004152528 
1.011671339 
1.oooO11936 

1.179001195 

10 

5 

20 
20 

10 
19 
20 

14 

uJO), obtained by the Bulirsch-Stoer integration technique [I]. Table 5 exhibits 
more or less typical profiles for this problem. In Table 5 are listed the profiles 
for m = 5, n = 10, b = 2, E = .Ol and m = 10, n = 5, b = 2, E = .Ol. As a 
general comment we may state that for the range of m, n, b, and E investigated 
that the Picard perturbation method solved the problem successfully by producing 
profiles that matched the analytical solution to a relative error of the order of 10W4, 
even though uO(x) is a poor approximation to the true solution. The most obvious 
exception to this statement is that, when m and n simultaneously took on positive 
fractional values, the numerical method did not converge or gave absurd results 
at x = 0. This behavior is not surprising, for the following reason. The Lipschitz 
constant for (3.9) when m = n = .5 is K = max,<,<, maxy,y [ .5(1 + l X-.“)/ 
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TABLE 3 

Example 2. b = 2.0, E = .Ol 

m n 

0.0 

0.5 

1.0 

1.0 

1.0 

2.0 

2.0 

3.0 

3.0 

5.0 

5.0 

5.0 

10.0 

10.0 

10.0 

10.0 

1.0 

3.0 

0.0 

0.5 

10.0 

3.0 

10.0 

0.5 

2.0 

0.5 

5.0 

10.0 

1.0 

2.0 

5.0 

10.0 

40) 
analytical 

20.09975124 

14.28285686 

1.01485039 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

14.28285686 

No. iterations 
Un@) for convergence 

20.10246977 6 

nonconvergent 

1.01485039 4 

nonconvergent 

14.29446315 8 

14.28429419 11 

14.29282009 10 

nonconvergent 

14.28416741 12 

nonconvergent 

14.28600549 7 

14.29141936 8 

14.28577433 6 

14.28497788 12 

14.28678949 7 

14.29271511 6 

TABLE 4 

Example 2. b = 2.0, f = .OOOl 

In n 
40) 

analytical &l(O) 
No. iterations 

for convergence 

0.5 0.5 141.4354977 nonconvergent 

0.5 1.0 141.4354977 nonconvergent 

1.0 0.5 141.4354977 nonconvergent 

1.0 1.0 141.4354977 144.4317976 6 

1.0 10.0 141.4354977 141.9251559 8 

5.0 5.0 141.4354977 141.5821153 7 

5.0 10.0 141.4354977 141.7853877 7 

10.0 1.0 141.4354977 144.4170685 8 

10.0 5.0 141.4354977 141.5866668 7 

10.0 10.0 141.4354977 141.7584812 7 
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TABLE 5 

Example 2. b = 2.0, E = .Ol 

X 

m=5 m = 10 
n = 10 n=5 

4x) u(x) 
analytical u*(x) analytical us(x) 

0.0 14.28285686 14.29141936 14.28285686 14.28678949 

0.1 14.28292686 14.29148932 14.28185689 14.28578953 

0.2 14.28508689 14.29364801 14.25089342 14.25482605 

0.3 14.29926966 14.30782153 14.04196517 14.04589721 

0.4 14.34389023 14.35240814 13.29624956 13.30017258 

0.5 14.40267260 14.41110174 11.50240365 11.50625752 

0.6 14.22495778 14.23320388 8.52355519 8.52704393 

0.7 12.84666182 12.85454848 5.37688500 5.37925851 

0.8 8.87961901 8.88625330 3.27664815 3.27770938 

0.9 4.34777208 4.35027274 2.27407957 2.27439854 

1.0 2.OOOOO000 2.00000000 2.00000000 2.oooOOOOO 

(x.” + EY)(x.~ + EJJ)[ and for small x the Lipschitz constant GZ x-.~/~EY~. For 
representative values of E, Y, and y (see Tables 2, 3, 4) K is unbounded as x --f 0, 
so that convergence of Picard’s method can not be expected. 

For this example the convergence criterion was set so that the relative error 
at x = 0 was less than 10-4. With few exceptions the problem was solved iteratively 
until the convergence criterion was met or until a maximum of 20 iterations, 
whichever occurred first. For the runs which satisfied the convergence criterion, 
the entire profile obtained by numerical integration also satisfied the relative 
error criterion. In general the Picard perturbation method generated after relatively 
few iterations a profile that was stable and that matched reasonably closely the 
analytical profile except in the vicinity of the origin. For the runs which did not 
converge to the analytical result at x = 0, but did converge to a constant value, 
this value had a relative error in the range of .03 to .07. 

While Comstock [5] specified that the boundary condition should be b > I, 
we solved for b = I as a limiting case. Our numerical experience indicates the 
need for the condition b > 1, for the number of iterations required for b = 1.0, 
E = .Ol cases is about twice those for b = 2.0, E = .Ol for identical m and n. 
In addition for b = 1 .O, E = .Ol about one-fourth of the cases converged to values 
of u,(O) that had relative errors in the .03 to .07 range. On the other hand, for 
b = 2.0, E = .Ol or E = .OOOl all the cases converged to the analytical result, u(O), 



AN ITERATION PERTURBATION TECHNIQUE 295 

except for those cases with 0 < m, n < 1. In fact convergence was obtained on 
the average within eight iterations. For all the runs in Tables 2, 3, and 4 we have 
observed that the Picard iteration method produced the u,(O) within 1 % of the 
converged solution in approximately 25 to 50 % fewer iterations than required 
for convergence. In other words roughly half of the Picard iterations were required 
to drive u,(O) over the last 1 % of accuracy. 

Since as stated above the Picard perturbation method establishes a fairly stable 
profile in relatively few iterations except in the neighborhood of the origin, the 
solution may be speeded up by iterating only over the interval (. 10,O). A reduction 
of step size as much as one-tenth, if needed, would increase accuracy without 
increasing computer time. 

Some comments will be made now about other investigators who have looked 
at this problem. Comstock [5] stated that with the PLK method, better results 
were obtained when m > n. We have not found any preferred relation m > n 
or m < 12 as far as accuracy or number of iterations is concerned for the numerical 
values investigated. 

The problem of C.C. Lin, cited by Comstock [5] which is this example with 
m = 0 and b = 1 can not be solved by Lighthill’s method according to Lin. 
The Picard perturbation method however solves Lin’s problem with no difficulty 
and converges to the analytic solution. 

EXAMPLE 3 [3, 51. Carrier has studied equations of the form 

(x” + EU)(dU/dX) + (2/a) 24 = r(x), (3.14) 

u(1) = 1. (3.15) 

For the case r(x) = 0, the equation reduces to a Riccati equation whose analytical 
solution is given in terms of Bessel functions by 

x = _ (EU)1,2 v1(441’2) + A yl(441’2)l 
{J~(cx(Ezp) + A Yo(a(a4)1/2)} . (3.16) 

The constant A is evaluated by solving (3.16) for the boundary condition u(1) = 1 
atx=l. 

The problem for 01 = 2 was solved for several values of E by the Picard pertur- 
bation method, using at E = 0, the initial solution 

U, = e-'l-ll"', (3.17) 

which incidentally is a poor approximation to the true solution. 
Table 6 lists the constant A, the analytical solution u(O), and the Picard pertur- 
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TABLE 6 

Example 3 

.OOlO 0.4652609651 2.0265699(10*) 2.0279958(102) 

BOO5 0.4219184595 3.6329068(10a) 3.6366690(102) 

BOO1 0.3469146302 1.4554414(103) 1.4585247(W) 

bation solution ~~(0) versus E. The relative error between the analytical and the 
numerical results is of the order .OOl. 

As a side remark we wish to comment on Carrier’s approximation at x = 0, 
which is [3] 

u(0) - [E ln(l/e)]-‘. (3.18) 

For the numerical examples we attacked, we find that Carrier’s approximation 
gives erroneous results compared to both the analytical and the Picard iteration 
method. 

4. CONCLUSION 

We have presented a technique to supplement or complement the conventional 
approach to perturbation problems. The Picard perturbation method offers an 
easy to implement and easy to use computational scheme. Numerical experience 
with the method indicates that the method produces profiles that closely match 
the analytical solution over the entire interval including the origin. The number 
of iterations to achieve convergence is quite reasonable. For the examples presented 
here the convergence properties appear rather remarkable since in each case the 
initial iterate U&X) is a poor approximation to the true profile. Furthermore, 
the computation may be speeded up dramatically by iterating only in the vicinity 
of the origin, once the profile has stabilized outside of the neighborhood of the 
origin. By solving numerically for various E one can generate an interpolation 
formula for the solution as a function of E, which is equivalent to the expression 
obtained by conventional perturbation techniques. 

Since the analytical solutions are available, the examples in this paper serve as 
convenient test beds for the PLK and other perturbation methods including ours. 
This does not mean that the examples could not be solved by nonperturbation 
techniques. Although other investigators have not mentioned it, these examples 
may be solved for a wide choice of parameters and boundary conditions by straight 
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forward integration of the original differential equations, especially if a precision 
integration method such as Bulirsch-Stoer is employed. There are, however, 
other cases where the Picard perturbation or other perturbation techniques are 
required. This may occur, for example, when the choice of the parameters and the 
boundary conditions are such that the coefficient of the derivative in (1.1) 
approaches or equals zero. Straight forward integration of the original differential 
equation may give erroneous results or may exhibit overflow. To illustrate, if we 
select for Example 1 the parameters b = -5, 7 = 1, E = .10, the boundary 
condition is u( 1) = - 10 and the analytical solution at x = 0 is u(0) = 0. Straight- 
forward integration of the original differential equation with a step size h = .Ol 
yields the erroneous results at x = 0 of u(0) = -.1022917, while the Picard 
perturbation method for the same step size converges to u(0) = -.0045833 after 
the second iteration. 
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